ANSWERS & MARK SCHEMES

QUESTIONSHEET 1

(a) $A = nucleus; B = ribosome/RER; C = (RER) vesicle; D = Golgi body;$	4
(b) (i) (nucleus) contains DNA which codes for the enzyme; DNA code is transcribed to messenger RNA;	2
(ii) mRNA attaches to ribosomes;code on mRNA translated into the polypeptide;	2
 (iii) polypeptide is transported through cell to Golgi body; (allow 1 mark for 'package the enzyme') in vesicle of <u>rough</u> endoplasmic reticulum; 	2
 (iv) polypeptides in Golgi body combined/modified to form enzyme; carried in Golgi vesicles to cell surface; for secretion/exocytosis; 	max 2
	TOTAL 12

QUESTIONSHEET 2

(a) Lat	pels:	mitochondrion; microvilli/brush border;	2
		villi/brush border increases surface area; take of glucose/enables greater uptake of glucose/ref to larger amount of carrier protein present;	2
		nondria provide ATP; ive transport of glucose (into intercellular fluid);	2
			TOTAL 6

(a) (i)	autonomic neurone would be non - myelinated;	1
(ii)	sensory neurone would have the cell body attached to the centre of the fibre;	1
(b) (i)	speed up impulse; by saltatory conduction; electrons/local currents jump from node to node;	3
(ii)	composed of polyribosomes; synthesise enzymes involved in transmitter production/recognition proteins for synapse formation; eg. synthesis of acetylcholine/noradrenaline/any other correct transmitter substance;	3
		TOTAL 8

AS 1

CELL BIOLOGY

ANSWERS & MARK SCHEMES

QUESTIONSHEET 4

(a) $A = \underline{double}$ membrane; $B = \text{starch grain}; C = \underline{granum}/\underline{grana}; D = \underline{stroma}; E = \underline{lipid} droplet;$	5
(b) (i) granum/thylakoid membranes/quantosomes;	1
(ii) stroma;	1
 (c) Any three of: both have double outer membrane/ large internal surface area/many internal membranes/ contain DNA/ribosomes/ contains lipid droplets;;; 	3
(d) (i) in mitochondria catalyses oxidative phosphorylation; in chloroplasts catalyses (cyclic/noncyclic) <u>photo</u> phosphorylation;	2
(ii) enables both to synthesise proteins/polypeptides;	1
	FOTAL 13

QUESTIONSHEET 5

	Process		
Description	Simple Diffusion	Facilitated Diffusion	Active Transport
Is ATP required		No;	Yes;
Are protein carrier molecules involved?		Yes;	
Direction of transport is down concentration gradient	Yes;		No;

TOTAL 5

AS 1

CELL BIOLOGY

ANSWERS & MARK SCHEMES

QUESTIONSHEET 6

- A -ribosome manufacture/synthesis of ribosomal RNA;
- B mitochondria;
- C increase surface area for attachment of enzymes/for electron transfer chain/oxidative phosphorylation;
- D lysosomes;
- E lipid/steroid synthesis/transport;

QUESTIONSHEET 7

Feature	Bacterial cell	Liver cell	Palisade cell	
Nuclear membrane	×	1	1	
Vacuole	×	×	1	
Cell wall	~	×	1	
Microvilli	×	×	×	
Chloroplasts	×	×	×	
Mesosomes	~	×	×	
Glycogen granules	×	×	×	

TOTAL 5

(a) (i) and (ii) correct orientation of phospholipids; bilayer; correct orientation of protein;	3
	Phospholipids;	
	internal/intrinsic protein;	5
(b) Any two	of: transport/ receptors/recognition/ attachment sites/ enzymes;;	2
dow	usion; n concentration gradient; ydrogen carbonate ions/as dissolved CO ₂ ;	max 2
(ii) eith	er: facilitated diffusion; glucose binds to carrier/protein; protein changes shape/carries glucose across;	
or:	active transport; glucose binds to carrier/protein; energy or ATP required; protein changes shape/carries glucose across; ref. needs Na ⁺ to be carried at the same time;	max 2
		TOTAL 14

ANSWERS & MARK SCHEMES

(a) A = outer membrane; B = inner membrane; C = ribosomes; D = crista; E = DNA;	5
b) (i) cristae; (ii) matrix;	2
(iii) synthesises proteins/polypeptides;e.g. enzymes;	2
(b) $XY = 112 \text{ mm} = 112,000 \mu\text{m};$ (this distance may be altered by photocopying- adjust figures accordingly) $\frac{112,000}{130,000} = 0.86 \mu\text{m};$	2
	TOTAL 11

QUESTIONSHEET 10

QUESTIONSHEET 9

(a) A. Golgi body;B. centriole;C. nucleolus;	D. <u>double</u> nuclear membrane;E. mitchondrion;F. rough endoplasmic reticlum;	6
(b) (i) Any three of: presence of many large rough ER w presence of micro	ith ribosomes/	
large nucleus;;;	Will/Golgi body	3
(ii) presence of much	smooth endoplasmic reticulum;	1
		TOTAL 10

(a) range 7 - 10 nm;	1
 (b) (i) glycocalyx; (ii) intrinsic/integral/internal protein; (iii) phospholipid bilayer; 	3
(c) (i) lipids/proteins can move laterally/change places;	1
 (ii) 1. exocytosis: when material is passed out from the cell using a vesicle; endocytosis: is the uptake of material into the cell by forming a vesicle with the plasma membrane; 	2
 phagocytosis takes solid material into the cell; pinocytosis takes fluid into the cell; 	2
	TOTAL 9

ANSWERS & MARK SCHEMES

QUESTIONSHEET 12

(a) protein;	1
(b) 7.0 –10 nm;	1
(c) shape of receptor site is specific to growth hormone/only growth hormone fits;	1
(d) receptor damaged/mutation affects protein; unable to recognise/bind with growth hormone;	2
	TOTAL 5

QUESTIONSHEET 13

 (a) facilitated; rate of transport levels off; when number of solute molecules exceeds number of carriers/proteins; 	3
(b) Any two of: concentration gradient/difference/	
size/shape of molecule/	
polarity of molecule/	
temperature;;	2
(c) active transport/use of ATP; sodium/chloride pumps move ions out;	
cannot re-enter because cell membrane is impermeable to these ions;	3
	TOTAL 8

(a) (i)	A = basement membrane; B = nucleus; C = mucous goblet cell; D = cilia; E = (layer of) mucus;	5
(ii)	Any two of: bronchial tree/oviduct/vas deferens;;	2
(iii)	D. beat to move material along; beat rhythmically; E. can trap dust/dirt in bronchial tree/ medium for cilia to beat in;	3
b) (i)	in a simple epithelium all cells touch the basement membrane; in a compound epithelium there are several cell layers/only the lower cells touch the basement membrane;	2
(ii)	transitional; bladder/ureter; stratified/compound squamous; skin/buccal cavity/rectum/vagina;	4
		TOTAL 16

ANSWERS & MARK SCHEMES

QUESTIONSHEET 15

(a) (i) $A = plasma membrane; B = cell wall; C = nuclear mass; D = mesosome; E = ribosomes;$	5
(ii) contain the enzymes for respiration/cell wall synthesis;	1
(iii) coccus;	1
(b) prokaryotic cells contain no membrane-bound organelles, eukaryotes do; prokaryote cells have no nuclear membrane, eukaryotes do/prokaryotes have a nuclear mass; eukaryotes have a nucleus/prokaryotes have one long chromosome, eukaryotes have many chromosomes; prokaryotes have no nucleoli, eukaryotes do; prokaryotic cell walls contain murein, eukaryotic cell walls (if present) contain cellulose; prokaryotes contain 70S ribosomes, eukaryotes contain 80S ribosomes;	max 3
	TOTAL 10

QUESTIONSHEET 16

(a) (i)	A = xylem; B/C = phloem;	2
(ii)	A = vessel; $B = $ companion cell; $C = $ sieve tube;	3
(iii)	D = sieve plate;	1
(b) (i)	no contents/hollow to allow easy passage of water/salts; no end cell walls so no blockage to passage of water/salts; pits in wall allow lateral passage of water/salts; lignified wall gives strength to support the plant/prevent collapse of vessel when under transpiration pull;	max 3
(ii)	B has a nucleus, C does not; B has dense cytoplasm, C has peripheral cytoplasm (or equivalent)/C has a vacuole/B does not; C has a sieve plate, B does not;	max 2
(c) length between lines = 51 mm (allow range 50.5 - 51.5);		
	$\frac{51}{750}$; (this distance may be altered by photocopying- adjust figures ad	ccordingly)
	= 0.068 mm;	3
(0.067 mm - 0.069 mm) (allow consequential error if length measured incorrectly)		

TOTAL 14

AS 1

CELL BIOLOGY

ANSWERS & MARK SCHEMES

QUESTIONSHEET 17

(a) (i)	parenchyma;	1	
(ii)	packing tissue/supporting tissue/storage tissue;	1	
(iii)	isodiametric cells; allows tight packing; thin cell wall; transmission of turgidity/vacuole allows development of turgidity; contains starch grains;	max 3	
(b) (i)	phloem;	1	
(ii)	A = sieve tube; B = companion cell; C = sieve plate;	3	
(iii)	transport of organic solutes/amino-acids/sugars/equivalent;	1	
(iv)	sieve plate has perforations (to allow passage of solutes); plasmodesmata pass through sieve plate from cell to cell; sieve tubes elongated for easier transport; sieve tubes lose nucleus/most organelles, so transport easier through cytoplasm;		
	companion cell regulates action of sieve tubes;	max 3	
		TOTAL 13	

(a) (i)	A = <u>rough</u> endoplasmic reticulum; B = vesicles <u>from rough ER</u> (not Golgi vesicles); C = Golgi body; D = plasma/cell membrane;	4
(ii)	to transport polypeptides/proteins from the rough ER to the Golgi body;	1
(iii)	it assembles polypeptides into proteins; may combine the protein with lipid/carbohydrate/nucleic acid/metal ions/any correct example; to synthesise enzymes/some hormones/mucus/other correct example; packages secretion into vesicles and releases these to the cytoplasm;	max 3
(b) (i)	plasma cell/lymphocyte; antibodies;	2
(ii)	HCl in gastric juice/sweat/sebum/named hormone/any valid example; oxyntic cell/stomach cell/sweat gland cell/sebaceous gland cell/correct endocrine cell/cell must be appropriate to	the example; 2
(iii)	the stored secretion may be an enzyme or hormone which could adversely affect the cell if free (in the cytoplasn thus it is isolated within a phospholipid membrane;	ı); 2
(iv)	stimulation by a hormone/nerve impulse;	1
	ТОТ	AL 15

ANSWERS & MARK SCHEMES

QUESTIONSHEET 19

(a) (i)	A = <u>rough</u> endoplasmic reticulum; B = vesicles from <u>rough</u> ER; C = Golgi apparatus/body: D = mitochondrion;	4
(ii)	contain digestive/hydrolytic enzymes; eg. protease/peroxidase/acid phosphatase; keep the enzymes in membranes, thus segregated from the cytoplasm/prevent enzymes from damaging the concerned with digesting/recycling phagocytosed material/aged organelles;	e cytoplasm; max 3
(iii)	receives polypeptides from rough ER via vesicles; assembles them into enzymes; packages them in lipoprotein membrane; 'buds' them off as primary lysosomes;	max 3
(b) (i)	primary lysosome has budded off from Golgi body and is unmodified; secondary lysosome is formed when the primary lysosome fuses with an autophagic vesicle/phagosome;	2
(ii)	an autophagic vesicle will absorb an aged organelle/mitochondrion; when fused with the primary lysosome the aged organelle will be broken down/recycled;	2
	a phagosome takes in solid material by phagocytosis/engulfing; the solid material is broken down when the phagosome fuses with a primary lysosome;	2
	the residual body contains the remains of the digested organelle/phagocytosed material; will return products of digestion/amino acids to the cytoplasm for reuse;	2
		TOTAL 18

(a) (i)	increases surface area/value of A; if A is increased then J is increased; thus more absorption per unit time;	3
(ii)	(if membrane is thin) Δx is small; thus J is large; thus more absorption per unit time;	3
(b) (i)	provide ATP; for active transport; to maintain/work against concentration gradient;	3
(ii)	ref. cholesterol will mix with water and allows passage of some water soluble substances; will accelerate diffusion/entry of non-polar substances; e.g. oxygen/carbon dioxide;	max 2
		TOTAL 11